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A formal comparison is made between direct standardization and three cross­
classified data structures: tables of means which are linear additive; tables of means 
which are log-linear additive; and tables of frequencies which are log-linear addi­
tive and can be converted to tables of proportions ll'hich are logit-linear additive. 
Standardization is an appropriate method of summarizing the data if the differ­
ences between standardized means and so 011 are not affected by the choice of 
standard distribution. This condition occurs ll'hen there is no imeraction be111·een 
the predictor and control variables in their impact on the depende/1/ variable, It is 
shown that the condition may also be expressed in the form of the general linear 
model with the corresponding i/1/eraction terms absent. Then, ll'hen standardiza­
tion is appropriate, differences between standardized qua/1/ities are estimates of 
differences between parameters in linear models. In some circumstances, e.g. when 
the cell sizes are small, if the specified interactions are believed absent then the cell 
entries may be fitted using the general linear model; standardization of the jilted 
entries would then be preferable lo standardization of the observed entries. 

THE GENERAL LINEAR MODEL 

AND DIRECT STANDARDIZATION 

A Comparison 

RODERICK J.A. LITTLE 
World Fertility Survey 

THOMAS W. PULLUM 
Univeristy of Washington 

he purpose of this article is to sharpen the distinction and 
to clarify the relationship between two alternative ways 

of analyzing a common data structure. The structure to be 
assumed is an array of rates, means, or proportions, cross­
classified in a nonorthogonal design with two or more predictor 
or control variables. The frequencies or case bases in each cell are 
known, but the researcher may not have access to the within-cell 
sums of squares. (Of course, the sums of squares are calculable if 
the cell entries are proportions.) 
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476 SOCIOLOGICAL METHODS & RESEARCH 

The need to analyze such a structure is common, particularly in 
secondary analysis. For example, each Country Report issued 
through the World Fertility Survey (WFS) contains dozens of 
many-way tabulations of such a type, in which the cell entry is the 
mean number of children ever born, or the proportion wanting no 
more children, or the proportion using contraception, and so 
forth. 

At one extreme of sophistication is some variant of direct 
standardization, such as the technique designated as Test Factor 
Standardization by Rosenberg (1962). Standardization has been 
used by demographers for decades and involves only simple cal­
culations on a hand calculator. It is still occasionally used when 
more rigorous methods are accessible, as by Lieberson (1978) and 
by Clifford and Tobin (1977), but its use is easiest to justify when 
other methods are not available, as in many developing countries 
(Pullum, 1978). 

At the other extreme, when computing facilities are at their 
best, many researchers would be inclined to use some variant of 
the General Linear Model (GLM) such as Multiple Classification 
Analysis. A discussion of these methods, some of which is re­
peated here, is given by Little ( 1978). 

Our objective here is to reconsider the conditions under which 
standardization may be appropriate or inappropriate, and to 
reconsider the interpretation of its results, within the terminology 
of the general linear model. In no sense are we advocating in­
creased use of standardization at the expense of more powerful 
models, but we seek to establish a formal linkage and to facilitate 
the correct use of a simple procedure. 

In describing these approaches and in relating them we shall 
work with two main examples from the Fiji Fertility Survey, con­
ducted in 1974. Table 2 gives the mean number of children ever 
born within categories of marital duration and education. This 
table is limited to Indian women, because there are pervasive 
ethnic differences in Fiji. Table 11 gives the proportion of Indian 
women who have ever used any efficient contraceptive method, 
within categories of current age, desire for more children, and 
education. For more details the reader may refer to the published 
report (Fiji, 1976) or to other WFS documentation. 
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Little, Pullum / GENERAL LINEAR MODEL 477 

STANDARDIZATION OF POPULATION QUANTITIES: 
IMPLICATIONS 

Let us consider a two-way cross-classification of means. Denote 
the variables as A and B with category labels i running from 
1 to I and j running from 1 to J, respectively. In this section we 
shall assume that population data are available, so that no 
sampling is involved. Let µii be the mean, rate, or proportion in 
row i and column j, and let vu be the population base frequency in 
that cell. Let Vj. be the marginal frequency for row i, and µi the 
mean for row i, using the usual dot notation. Thus 

µ. = Z: µ .. (v . ./v. ) (where v. = 2.: v .. ) 
1• j 1.J 1J I• I• j IJ 

[I] 

with weights vu/ Vi, which sum to unity over j for all values of i. 
Direct standardization with respect to variable B involves cal­

culating row means with a new choice of weights [wi] which are 
the same for all values of i. Thus, the standardized mean for row i 
becomes 

µi·(w)= 2: µiiwi. 
.I .. 

[2] 

with ~ wi = l. The set of weights [wi] is called the standard distri­
butiob and µ;.(w) represents the hypothetical mean that row i 
would have if B had this same distribution within each row. 

A common choice of standard distribution is 

Wj = V·j I I.I .. , [3] 

which is the marginal distribution of Bin the population. This is 
the form called Test Factor Standardization (TFS) and leads to 
standardized means 

i = ~ µ .. (v ./v ). 
I• j IJ •J •• 

[4] 

Another common choice of weights is wi = 1 / J for all j, which 
leads to the unweighted row means. 
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478 SOCIOLOGICAL METHODS & RESEARCH 

As noted, the interpretation of the standardized means de­
pends on the choice of standard distribution. However, often the 
analyst is more concerned with differences in the standardized 
means 

[5] 

which represents the differences between levels of A when B has 
the same distribution [wi] within each level. Several authors, for 
example Kalton (1968) and Atchley (1969), have pointed out that 
the interpretation of these differences as the effects of A con­
trolling B (or net of B) may be J:!1isleading when the differences 
are sensitive to the choice of standard distribution. 

The artificial data in Table 1 (taken from Pullum, 1978) illus­
trate this phenomenon. In this table, when the effect of education 
on mean parity is controlled for marital duration using Test 
Factor Standardization, the difference between the low and high 
education groups is (250·4 + 250·2)/ 500 - (250·6 + 250·2)/ 500 = 
-1.0. That is, under this choice of standard distribution, higher­
educated women would be said to have one child less than lesser 
educated women, controlling for marital duration. However, 
Table 1 shows that within levels of marital duration, the educa­
tion effect is either 0.0 children (for low marital duration) or 
-2.0 (for high maritai duration). Therefore the results of direct 
standardization will range from an education effect anywhere 
between 0.0 and -2.0, depending on choice of standard, is a 
misleading substitute for detailed examination of the table's 
interior. 

Hence it is relevant to ask under what conditions the differ­
ences are the same for all choices of standard, that is, 

[6] 

This condition is met if and only if the effects A and B are 
linear additive, according to the following definitions. 
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TABLE 1 
Mean Parity of Women Having Specified Levels of Education 

and Marital Duration (hypothetical data) 

Marital 
Duration 

Low 

High 

Low 

2.0 
(SO) 

6.0 
(200) 

NOTE: Base Frequencies in Parentheses. 

Education 

High 

2.0 
(200) 

4.0 
(SO) 

Definition I. The effects of A and B are linear additive if and 
only if one of the following conditions holds: (a) differences in the 
row means are the same for all columns j, that is, 

[7] 

(b) differences in the column means are the same for all rows i, 
that is, 

[8] 

(c) there exist constants [µ, ai, i = 1 to I, J3i, j = 1 to J] such that 

µii = µ + O'i + /3i for all i and j. [9] 

The equivalence of equations 7, 8, and 9 is well known and easily 
demonstrated. To show that equation 7 implies equation 6, note 
that if equation 7 holds then 

/'>, . .,(w) = 2: w.µ .. - 2: w.µ.,. = ~ w. 1'1 .. , = 1'1 .. , for all [w. J. 
I. I j J IJ j J I J j J I, I I .I J 
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480 SOCIOLOGICAL METHODS & RESEARCH 

To show that equation 6 implies equation 7, assume equation 6 
and apply the particular set of weights Wj = 1, w/ = 0 for j #j' for 
each value of j in turn. We have thus established that equation 6 is 
equivalent to linear additivity. That is, differences in the stand­
ardized means can be intepreted unambiguously as effects of A 
net of, or controlling B if and only if A and B are linear additive. 
By contrast, if interaction terms 'Yii must be incorporated into 
equation 9, i.e., if A and Bare not linear additive, then differences 
in standardized means will depend upon the magnitude of the 
interaction effects and the choice of weights. Such was the case for 
the hypothetical data in Table 1 discussed earlier. 

There is one other situation where standardization can be used 
to calculate unambiguously the effects of A controlling B. Sup­
pose that instead of calculating differences between the standard­
ized means we calculate ratios of the standardized means Cli/ (w) 
= µi .(w)/ µi'.(w), say. Alternative expressions of this quantity are 
100 [ Cli/( w) -1 ], the percentage difference between row i and 
row i', or log Cli,i'(w), which is the difference in the logarithm of 
the standaridized means of row i and row i', since log 8i/(w) = 
log µ;,(w) - log µ;',(w) = D..i/ (w), say. 

These quantities are useful representations of the net effect of A 
if they are constant for all choices of weights, [wi]. This condition 
of invariance is met if and only if the effec.«s of A and Bare multi­
plicative, or log-linear additive, according to the following 
definition 

Definition 2. The effects of A and B are log-linear additive (or 
multiplicative), if and only if one of the following conditions 
holds: (a) differences in the logarithms of the row means are the 
same for all columns; that is, 

log µii - log µ/i = 6.i/ for all j; [10] 

(b) differences in the logarithms of the column means are the same 
for all rows i; that is, 

log µ;i - log µi/ = Ni/ for all i; [ 11] 
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( c) there exist constants [µ, C¥i, i = 1 to I, /3i, j = 1 to J] such that 

log µii = µ + ai + f3i for all i and j. [12] 

It is easily shown, by analogy with the additive case, that log­
linear additivity is equivalent to the invariance condition: 

log µi. (w) - logµ( (w) = .6i,i' for all [wi]. [13] 

The base of the logarithms in this definition is arbitrary. Equa­
tions 10 to 13 can be exponentiated to form a multiplicative 
analog to equation 9 and to show that if the effects of A and Bare 
log-linear additive, the ratios between the standardized means of 
A are the same for all choices of standard and can be used to de­
scribe the effect of A controlling B. 

SAMPLE ESTIMATION 

So far we have considered only the structure of the population 
means of variables. We now apply these ideas to means from a 
sample of the population. 

STANDARDIZATION OF SAMPLE MEANS 

Suppose that we have a sample of size nu for the cell m row i, 
anrl column i_ anrl an ohservect rate_ mean or nronortion m,, in 
-·--- - --- ----- J' ----- -·-- - ---- · -- -----, -----·--, -- r--r--~---- -·- 1J ........ 

that cell. The standardized mean for row i and standard distribu­
tion [wi] is 

m. ( w) = ~ 111 .. w .. 
!• j 1.J .I 

[14] 

Test Factor Standardization corresponds to the choice of weights 

Wj = llj/ll .. ' 

The following results are relevant: (a) suppose mij is an unbiased 
estimate of µij. Then the expected values of the differences in the 
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standardized sample means of A (or B) are the same for all choices 
of standard distribution if and only if A and Bare linear additive. 
(b) Suppose that mii is an unbiased estimate of JJ+ Then the ex­
pected values of the ratios of the standardized sample means of A 
(or B) are approximately the same for all choices of standard 
distribution if and only if A and B are log-linear additive. The 
approximation involves replacing the expected value of ratios by 
the ratio of expected values. 

The implications of (a) are as follows: for any cross-classifica­
tion, the differences of the standardized means mi, (w)-mi'. (w) 
will vary according to the choice of standard, w. However, if A 
and B are linear additive, these differences are always unbiased 
estimates of the population difference, which represents the effect 
of A controlling B. The choice of standard affects the sampling 
variance of the estimate, and the results of applying different 
standards differ only because of sampling fluctuation. On the 
other hand, if A and B are not linear additive, the differences of 
standardized means estimate different quantities for each choice 
of weights. A similar interpretation of (b) is obtained by replacing 
differences by log differences or ratios in this statement. 

Example 1. The data in Table 2, taken from the 1974 Fiji 
Fertility Survey, consist of a cross-classification of the Mean 
Number of Children Ever Born (or Mean Parity) by two factors: 
A = Education, with four levels (l = No Education, 2 = Lower 
Primary, 3 =Upper Primary, 4 =Secondary or Higher), and B = 
Years Since First Marriage (or Marital Duration), with six levels 
( 1 = 0-4 years, 2 = 5-9 years, 3 = 10-14 years, 4 = 15-19 years, 5 = 
20-24 years, 6 = 25 or more years). The first entry in each cell is the 
mean parity mii and the second entry is the sample size nii· 

Primary interest in the table concerns the relationship between 
education and fertility. It appears that much of the large differ­
ences in the raw mean parities between educational levels is 
attributable to the compositional effect of marital duration, that 
is, to the fact that better educated women tend to be younger and 
to marry later than less educated women. It is of interest to esti­
mate the relationship between education and fertility after con-

10 
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TABLE 2 

Mean Number of Children Ever Born Since First Marriage 
(for ever-married women of Indian race) 

Years Since First ~iarriage (B) 
0-4 5-9 10-14 15-19 20-24 25+ Mean 

Educational 
a) 

Level (A) 1 . 95b) 2.80 4 .14 4.93 6.20 7.18 5.19 
82 93 118 151 160 288 892 

2 .97 2.69 3.90 5.43 6.03 7.49 4.21 
150 184 202 159 111 131 937 

3 .97 2.46 3.64 4.25 5.08 6.42 2.80 
188 149 99 63 48 31 578 

4 .72 2.08 2.89 3.20 3.40 2.00 1. 53 
149 64 36 10 10 1 270 

Mean .90 2.56 3.83 4.98 5.89 7.21 3. 96 
569 490 455 383 329 451 2677 

SOURCE: Fiji Fertility Survey, 1974. 
a. First &ntry is mean number of children ever born. 
b. Second entry is sample size. 

trolling for marital duration. Hence we calculate means for each 
educational level standardized With respect to Marital Duration. 
We shall employ three standard distributions: (1) the marginal 
distribution of Marital Duration which corresponds to Test 
Factor Standardization; (2) the distribution giving the same 
weight to each level j of Marital Duration, which we call Equal 
Weights Standardization; and (3) the observed distribution of 
Marital Duration for the Secondary and Higher Educated 
women. 

The weights for these distributions are given in Table 3 
(rounded to two decimal places), and the standardized mean pari­
ties are given in Table 4. The last column of Table 4 gives the over­
all mean of the standardized education means, weighted by the 
total sample sizes in each education level. The low values for the 
third choice of standard reflects the prevalence of women with low 
marital durations and hence low parities among women with 
Secondary and Higher Education. When these means are sub-

11 
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TABLE 3 
Weights for the Three Standard Distributions of Marital 

Duration (to be applied to Table 2) 

Marital Duration Category 

Standard 1 2 3 4 5 6 Total 

1) Test factor .21 .18 .17 . lli .12 .17 1.00 

2) Equal Weights • 1-7 .17 .17 .17 .17 .17 1.00 

3) Secondary and .55 .24 .13 .04 .04 .oo 1.00 
Higher 

tracted from the standardized parities in the same row, we obtain 
the deviations given in parentheses. Result (a) implies that the 
deviations in Table 4 will have the same expectation for all stand­
ards if the effects of A and Bare linear additive. However, we note 
that in this example these deviations appear to be sensitive to the 
choice of standard: for example, the women with secondary and 
higher education have 1.58 children less than the mean after TFS, 
but only .53 less than the mean after standardization with the 
marital duration distribution of the Secondary and Higher 
Education group. 

Although no statistical test has been applied, this seems to sug­
gest that the effects of A and B are not linear additive. In fact 
linear additivity can be discredited from theoretical considera­
tions. The assumption implies that differentials in mean parity 
between education groups are the same for all levels of marital 
duration and this is clearly not appropriate; in the absence of 
premarital births, the mean parity of each group at marriage 
duration zero is zero, and hence differences are also zero. Differ­
ences between education groups emerge only as marital duration 
increases, and hence the effects of education and marital duration 
cannot be additive. 

In contrast, the assumption that the effects are log linear addi­
tive, that is, percentage differences in mean parity between educa­
tion groups are the same for all marriage durations, seems much 
more plausible as a working hypothesis. Accordingly we present 

12 
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TABLE 4 
Standardized Mean Parities (as a result of the application 

to Table 2 of the three standard distributions of 
marital duration) 

Overall 
Educational Level Mean (Weighted) 

Stan<larJ 3 4 ----

1) Test Factor 4 .10 4.14 3.59 3. 24 3.82 
(. 28) (. 32) (-. 23) (-1.58) 

2) Equal h'cights 4.37 4.42 3.80 2.38 4.06 
(. 31) (. 36) (-.26) (-1.68) 

J) SL1 con<l.1 r~· and 2.18 2. 15 1. 9 7 ]. 5 3 2.06 
l! ighc> r (-. 12) (-.09) (-. 09) (-. 53) 

Deviations from the overall mean under each standard are given in parentheses. 

the effects of education as percentage deviations of the standard­
ized means from the overall standardized mean, with the results 
given in Table 5. It is clear that the percentage deviations are less 
sensitive to the choice of standard, thus lending support to this 
method of presentation and to the assumption of underlying log­
linear additivity. 

RELATIONSHIP TO MULTIPLE CLASSIFICATION ANALYSIS 

We have noted that standardization has a particularly simple 
interpretation when the effects of A and B are linear additive. 
Thus in situations where this is plausible it makes sense to con­
sider alternative estimates of the cell means µii which exploit this 
additivity assumption. Recall that if A and B are linear additive 
then the population means can be written as µu = µ + ai + /3i for all 
i and j, for suitable choices of µ, ai, and /3i· Hence we calculate 
~stimates {J., &i, and /3i from the data and replace the sample means 
by fitted values 

µ,ij =µ+a;+ ~j for all i and j. [ 15] 

The constants µ, ai, and ~i are chosen so that the fitted values 
are as close as possible to the sample means. More precisely, they 

13 
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TABLE 5 
Standardized Mean Parities (when the standard 

distributions in Table 3 are applied to the logarithrns 
of the parities in Table 2) 

Overall 
Educational Level Nean (Weight~ 
---~---· 

Standard 2 4 ---

1) Test Factor 4.10 4.15 3.59 2.24 3.82 
(7.4) (8.6) (-5.9) (-41.J) 

2) Equal Weights 4.36 4.41 3.80 2.38 4.06 
(7.5) (8. 7) (-6.4) (-41. 4) 

3) Secondary and 2.18 2.15 1. 98 1. SJ 2.06 
Higher (5. 9) (4. J) (-4 .1) (-25. 7) 

NOTE: Percentage deviations from the overall means under each standard are given in 

parentheses. 

are chosen so that the weighted sum of squares 

s s = 2; 11(jl. - Ill ) 2 

i,j IJ IJ IJ 
[ 16] 

is minimized. This procedure is the special case of additive 
analysis of variance called multi pie classification analysis (MCA). 
It is optimal when the within cell variance is constant (of course, it 
will not be constant when the cell entry is a proportion, a case to 
be discussed below); a more general form is to minimize 

'>' !, - I;', ... \2 
,_,, (\.,,JL,,\..J-1.·· - 111 .. 1 
i,j IJ IJ lj IJ 

for some choice of constants kij. 
This estimation of the cell means entails some extra computa­

tion. However, fitted values have certain advantages for the 
sample means, mii. (a) The fitted means can be calculated for 
cells with no observations; (b) the fitting process smooths the 
estimates for cells with small sample sizes, thus reducing the effect 
of sampling variance; (c) when within-cell sums of squares are 
known, the linear additivity assumption can be tested by an 
analysis of variance F-test, which essentially compares the 
minimized value of equation 16 with the average within-cell vari-

14 
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ance. Also, the statistical significance of the effects of A con­
trolling B can be calculated. 

Having obtained estimates of the cell means in this way, we can 
present the effects of A controlling B by standardizing the fitted 
values from equation 15. Then the standardized fitted values P.i. 
(w) = L ,J.;jWj clearly depend on the choice of standard distribution. 
Howdver, the differences in the standardized fitted means are the 
same for any choice of standard, for 

fl (w) 
I' 

µ., (w) = 2.: (jl .. 
I• j IJ 

=2; (0:. c'.X,)w =0. -&., forall{w}. 
j I I .J I I J 

[ 17] 

Hence these estimates of the effects of A net of Bare the same for 
any choice of standard, an attractive property not shared by esti­
mates from the observed means. 

Example 2. Consider again the data in Table 2 discussed in the 
previous section. Multiple classification analysis is not appropri­
ate for this table since there are strong theoretical reasons for 
rejecting the assumption of linear additivity of effects. Despite 
this we shall apply it here for illustrative purposes. The fitted 
values are given in Table 6. The additive structure of the fitted 
values can be readily verified; for example, the difference between 
the first two rows is .03 for all columns (apart from some round­
ing). Using these fitted values, we obtain estimates of mean parity 
within educational levels, standardized by marital duration, as 
given in Table 7. 

It is clear that the differences between the educational cate­
gories are the same for all choices of standard, as required by 
equation 17. Equivalently, the difference between each category 
and the overall (standardized) mean is the same for every choice 
of standard: .16, .19, -.27, and -.61 for educational levels 1, 2, 3, 
and 4, respectively. 

RELATIONSHIP WITH LOG-LINEAR MODELS 

We have noted that there are situations (such as the example 
above) when a linear additive model, with the consequent estima-

15 
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TABLE 6 
Fitted Mean Parities for Table 2 

(using MCA and the implausible assumption of 
linear additivity) 

Years Since First Marriage 

0-4 5-9 10-14 1 5-19 20-24 

Educational 1 1. 24 2. 79 3.97 5.06 5.97 
Level 

2 1. 27 2.81 4.00 5.09 6.00 

.81 2.35 3. 53 4.63 5.54 

4 .46 2.00 3.19 4.28 5.19 

25+ 

7.23 

7.26 

6.79 

6.45 

tion of net effects as differences of standardized means, is not 
realistic but a log-linear additive model, with the consequent esti­
mation of net effects as the ratios of standardized means, is appro­
priate. Under these circumstances it is natural to replace the cell 
means m.i by estimates of µu which take the form 

log/'.Lii = jJ. + & + ffii for all i and j [18] 

where µ, ai, fii are chosen so that the f;.u are in some sense close to 
the sample means. The usual criterion is to minimize the chi­
squared statistic 

x2 
= ,I;, nun\.i log(Pi/111 1/ [ 19] 

"J 

This is a variant of the generalized linear model, as discussed by 
Nelder and Wedderburn (1972). Note that despite formal simi­
larities, the model equation 18 is conceptually distinct from the 
log-linear models for contingency tables developed by Goodman 
( 1972), since here we are dealing with a cross-classification of 
means and not a two-way table of counts. Contingency tables will 
be discussed below. 

As before, we can standardize these fitted values, forming 
P,i.(w) = ~µiiWi· It is now clear that ratios of these quantities or 
differenc~s in their logarithms are the same for all choices of 

16 



Little, Pullum / GENERAL LINEAR MODEL 489 

TABLE 7 
Standardized Mean Parities: Three Standard 

Distributions in Table 3 Applied to the Fitted 
Data in Table 6 

Educational Level Overall 

St;rndat·d 4 
~~~ 

1) Test Factor 4.12 4.15 3.69 3.35 3. 96 

2) Equal h'eights 4.38 4.41 3.94 3.60 

J) Secondary and 2. 31 2. 34 1. 88 1. 54 2.15 
Higher 

Mean 

standard distribution. This follows from the equivalence of equa­
tions 12 and 13 applied to the fitted values flu. Specifically, 

log P.i. (w) - log ji.i',(w) = & - aj 1 for all [wj], 

so that the differences in the log standardized means are simply 
differences in the row parameters in equation 18. 

If the effects are believed to be log-linear additive, the analyst 
is faced with a choice of presenting ratios of standardized means 
with or without smoothing by fitting the appropriate model. 
Fitting the model requires more work, but provides estimates for 
any empty cells, is statistically efficient and allows the assumption 
of log-linear additivity to be tested, for example by a chi-squared 
test on the minimized value of X2

. 

Example 3. An additive log-linear model was fitted to the data 
in Table 2, using the computer package GLIM (General Linear 
Interactive Modeling). For those familiar with GLIM, this is 
achieved by specifying a Poisson error structure and a weight 
variable equal to the sample size in each cell. The fitted values are 
given in Table 8; the multiplicative structure can be verified by 
checking that ratios between rows are the same for all columns. 
(It is also worth noting that these fitted values are closer to the 
observed m~ans in Table 2 than those obtained from the additive 
model in Table 6. This reflects the superiority of the log-linear 

17 
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TABLE 8 
Fitted Mean Parities for Table 2 

(using the assumption of log-linear additivity} 

Years Sine~ First ~larriage 
0-4 5-9 10-14 15-19 20-24 25+ 

Educational 
Level 1. 02 2.75 4.00 5 .09 6.0J 7.24 

1. 03 2. 79 4.05 5.15 6.10 7.33 

.90 2.43 3.54 4.50 5.33 6.40 

. 71 1. 92 2. 79 3.56 4.21 5.06 

model for these data.) Using these fitted values, we obtain the esti­
mates of mean parity within educational levels, standardized by 
marital duration, given in Table 9. It is readily verified that the 
percentage deviations of the standardized means from the overall 
mean are the same for all these standardizations: 5.6%, 6.8%, 
-6.8%, and -26.4% for educational levels 1, 2, 3, and 4, respec­
tively. These estimates can be compared with the percent devia­
tions derived from the observed table given above. The results 
from the Secondary and Higher standard are closest to those 
from the log-linear model, partly because the other standards 
appear to lead to an underestimate of the fertility of the secondary 
and higher educated group. The underestimate is caused by the 
low observed means for this group in the 20-24 and 25+ categories 
of Marital Duration, and the relatively high weights given to these 
cells in Test Factor and Equal Weights Standardization. One 
effect of fitting the model is to revise upwards the estimated 
fertility of these cells, resulting in an increase in the estimated 
fertility for this group from 41% below the mean (see above) to 
26% below the mean. 

It should be noted that the model fitting process also provides 
statistical evidence on the fit of the model and the significance of 
the effects. The log-linear additive model yielded a chi-squared of 
16.07 on 15 degrees of freedom, indicating that the model fits the 
data. A log-linear model assuming no effect of Education yielded 
a chi-squared of 82.16 on 18 degrees of freedom, highly signifi­
cant, indicating that this model does not fit the data. The conclu-

18 



Little, Pullum/ GENERAL LINEAR MODEL 491 

TABLE 9 
Standardized Mean Parities: Three Standard 

Distributions in Table 3 Applied to the Fitted 
Data in Table 8 

Educational Level Overall Mean 

Standard 1 2 3 4 

1) Test Factor 4.09 4.14 3.62 2.86 3.88 

2) Equal Weights 4.36 4. 41 3.85 3.04 4 .13 

3) Secondary and 2 .19 2.21 1. 93 1. 53 2.07 
Higher 

sions are that the effect of Education, controlling for Marital 
Duration, is statistically significant, and the effect of Marital 
Duration and Education can be considered additive on the log­
linear scale. Confidence limits for the percentage differences in 
parity between education levels can also be derived. 

MULTIWAY CROSS-CLASSIFICATIONS OF MEANS 

The results thus far are easily generalized to tables of any 
dimension. To simplify the notation we shall consider only three­
way tables of means; the extension to higher order tables will be 
clear from this case. 

Consider a three-way cross classification of means. Denote the 
variables as A, B, and C with category labels i running from 1 to I, 
j running from 1 to J and k running from 1 to K. Let µiik be the 
population mean in row i, column j and panel k, and let Vijk be the 
population base frequency for that cell. 

Let 

{wk, j = I to J, k = I to K, L w.k = I} 
.1 j,k .1 

be a standard distribution over the factors B and C. Then the 
corresponding standardized mean for row i is 

µ. (w) = z; µ. kw .. k. 
I•• j,k 1.J 1.J 
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Differences in the (log) standardized means between two rows 
are the same for all choices of standard distribution if and only if 
the effects of A and BC are (log) linear additive, where BC is the 
joint factor consisting of all pairs of levels of Band C. These com­
parisons (on the approprite scale) then represent the effect of A, 
controlling B and C. 

Note that the joint control of Band C does not require that the 
effects of B and C are additive. In the notation of log-linear 
models, the condition i~ that the data fit the model [A, BC]. If the 
data fit the stronger model [A,B,C] which assumes the effects of 
A, B, and Care additive, then standardized means of Band C can 
also be interpreted as the net effects of those variables, since the 
model [A,B,C] implies the models [AC,B] and [AB,C]. 

CONTINGENCY TABLES 

So far we have considered applications of standardization to 
cross-classification of means. In this section we consider con­
tingency tables and in particular the relationship between stand­
ardization and the system of log-linear models for contingency 
tables given by Goodman ( 1970, 1972) and discussed in Davis 
( 1974) or Bishop et al. ( 1975). 

A contingency table presents the joint distribution of counts 
over a set of factors, whereas standardization concerns the rela­
tionship of one response variable to a set of other factors. Thus 
for our purposes it is necessary to define a response variable and 
to consider variation in the conditional distribution of that vari-· 
able over the other variables. It will be sufficient to consider a 
dichotomous response variable. If there are more than two cate­
gories, say K, one can successively dichotomize each of K-l cate­
gories against the remainder. 

Accordingly consider the IxJx2 contingency table with three 
factors A, B, and C and category labels i running from 1 to I, j 
running from I to J and k taking the values 0 and I, respectively. 
Let JJiik be the population count in row i, columnj. and level k; that 
is, we assume that no sampling is involved. We are interested in 
the distribution of C within combinations of A and B. Accord-
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ingly, for each i and j we form the proportion with C = 1, ref erred 
to as 1Tij, based on frequency Vij. = Vijo + Vijt, so that 

(20] 

Then the conditional distribution of C given A and B can be 
studied using this two-way table of proportions. 

Note that each proportion is also the mean of the variable C, 
and hence we have a table of means as discussed in previous sec­
tions, the only difference being that the response variable is 
dichotomous. Hence the results of the previous sections can be 
applied. That is, differences in the standardized proportions are 
appropriate if effects A and B are linear additive, and ratios are 
appropriate if the effects A and B are log linear additive. 

However, neither of these conditions corresponds to a log 
linear model for the IX J X 2 contingency table. Consider the log 
linear model for the frequencies 

A B C i\AB AC BC · . · k 
logvijk=i\+\ +i\j +\ + ij +\k +i\jk torall1,.J., [21] 

which is the model which fixes the AB, AC, and BC margins, and 
thus can be written [AB,AC,BC] in the notation of Goodman 
(1970). Note that equation 21 is the most general model short of 
the saturated model. The following comments apply to all log 
linear models for the frequencies which exclude three-way inter­
actions between (a) the predictor, (b) the control, and ( c) the de­
pendent variable. 

What model does equation 2i imply for the table of propor­
tions? Note that from equations 20 and 21 

n .. /( I ... n. ) = /J · 1 /P. , 
IJ IJ IJ IJO 

so 

log [ n .. /( I - n .. ) J =log /J .. 
1 

- log /J .. 
IJ IJ IJ !JO 

_ C C AC AC BC BC 
-(i\I -i\1)+(\1 -\o )+(i\jl -i\jO ). 

Hence log In./( I - n .. ) I =µ+a.+ (3. 
IJ IJ I J 

[22] 
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for suitable choices of µ, a;, and /3i· Thus the log linear model 
equation 21 corresponds to an additive model for log [rrii/ 
(1 - rrii)] in the table of proportions. This transformation of the 
proportions is the familiar logit or log-odds function: logit Trii = 
log[rr;i/ (1-rrii)], and accordingly, equation 22 is called a logit 
linear additive model, and variables A and B satisfying this model 
are called additive on the /ogit scale. 

In general, log linear models for contingency tables imply lo git 
linear models for proportions. The relationship is discussed in 
more detail in Goodman (1970). Aside from this theoretical link, 
there is a practical reason for considering the lo git transformation 
for tables of proportions: if a lo git-linear model is calculated then 
the fitted values always lie between zero and one. 

If equation 21 holds, then equation 22 implies that differences 
between standardized logits will be invariant with respect to the 
choice of standard. That is, differences of the form 

2: (logit n .. ) w. - (logit n.,.) w. 
j lJ J lj J 

(23] 

will not depend upon the choice of [wiJ. However,, above it was 
the means themselves that were standardized, and then differ­
ences between the standardized means or the logs of the stand­
ardized means were found to be invariant according to whether 
the underlying structure was linear additive or log linear additive. 
We are motivated to ask whether, in the present case, any trans­
formation of the standardized means (Le., proportions) has the 
invariance property. For this purpose we shall consider an 
example. 

Example 4. Consider the artificial table of proportions in 
Table 10. The effects of A and Bare lo git linear additive, as can be 
seen from the corresponding logits in Table 10 (ii). The differ­
ence between A= 1 and A= 2 is 2.0 on the logit scale within all the 
categories of B (controlling for B). As a result, standardization of 
the logits will be invariant with respect to the choice of standard: 
differences of the form equation 23 do not depend on the choice of 
[wJ] and always equal 2.0. 
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TABLE 10 
Standardization of a logit-linear Additive 

Table of Proportions 

Factor R 

Fae tu r ,\ . 119 .2G9 .500 
.018 .047 . 119 

)-~~bJ_e __ ~_f __ L_l?_l:;_i_t_s 

F..-1ctor ,\ -2.0 -1. 0 0.0 
-4.0 -3. 0 -2.0 

(iii) C_olll_l'_ar_i~S()~_,; __ ci_f__,S_t_a_n_J_aEdJ_z_e_d_l'_r_<l£C'_rt ions l'i.t_li_i_ri__c_a_t~r_i es of_ _II_,_ 
_u_s_~ n_g__ _\l_ar io~J_§ _ ___:_S_t_a.!!~_r_d_D_:!:_ s~r i bu~}~1-~~1_i__8 

Stnndard Standardized Differences in 
Distribution _£_r_~p___£__tions ~!_<1_n_~ard_t7~~_9___E_!--~_rt ion..'.-s. 

FLictor A Raw _L_ci_g L_ogi_t_ 

a) l () 0 . 119 .018 . JO] 1. 889 2 
b) J/ 5 2/5 0 . l 79 . 030 .149 1. 7 86 1. 953 
c) J/ 5 I I 5 1/5 .225 . 044 .181 l. 6 32 1. 842 
d) ]/J 1/J 1 /J . 296 .()(,] . 2 35 1. 5 74 1. 868 
e) 1/5 I.' 5 J/5 .378 . 084 .293 1.504 1. 891 
I) 0 0 J/ 5 .408 .090 . 317 1. 508 1. 9 J 7 
g) () 0 1 .500 . l I 9 . 381 l . 436 2 

The last three columns of Table 10 (iii) give, for seven arbitrary 
standard distributions labelled (a) to (g), the differences between 
three functions of the standardized proportions, namely 

Raw: 7TI .(wl- n2.(w), [24] 

Log: log 1T 
1 
,(w) - - logn2 ,(w), [25] 

Logit: logit 7T 1 ,(w) - logit 7T2 ,(w). [26] 

Note that all three sets of differences are sensitive to the choice of 
standard distribution. This example is sufficient to prove that 
none of these transformations has the invariance property, and it 
can be shown that, in fact, no transformation of the standardized 
proportions has the invariance property if A and B are logit 
linear additive. 

Nevertheless, Table 10 (iii) shows that differences in the logits 
(equation 26) are least sensitive to the choice of standard, varying 
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TABLE 11 
Portion of Indian Women in Fiji Who Ever Used an Efficient 
Contraceptive Method According to Current Age, Desire for 

More Chiidren and Educational Level 

Education Desire For INDIANS 
More Children Age 

1 2 3 4 

LOW YES p .60 . 72 .58 .42 
n 247 163 135 19 

LOW NO p .82 . 89 .90 . 84 
n 67 160 497 306 

HIGH YES p .65 . 82 .69 .67 
n 281 131 54 3 

HIGH NO p . 84 .88 .91 . 81 
n 50 101 133 47 

p proportion 

n = sample size 

SOURCE: Fiji Fertility Survey, 1974 

in this example from 2.0 to 1.868, compared with variations of 
.101 to .381 in the raw differences (equation 24) and 1.889 to 
1.436 in the logs (equation 25). 

We have seen that when a table of proportions has a lo git-linear 
additive structure, the constant differe.nce in the logits bet\veen 
rows cannot be recovered from the standardized raw proportions 
for all choices of standard distribution. The relationship between 
lo git-linear models and standardization for tables of proportions 
is at best approximate, resting in the replacement of equation 23 
by equation 26. 

This appears to limit the usefulness of standardization for 
observed tables of proportions where the logit-linear additive 
structure is believed to apply. The estimated effects from fitting 
the correct logit-linear model cannot be approximated from 
standardized proportions and are lost by standardizing the table 
of fitted proportions. Nevertheless, in some cases this theoretical 
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limitation can be ignored, for the following reasons. (a) For 
proportions lying between 0.2 and 0.8; the logit scale is approxi­
mately linear and thus log-linear additivity is nearly the same as 
linear additivity. Thus if most observed proportions in a table lie 
within this range, the analyst can safely consider raw differences 
in the standardized proportions. (b) For proportions of less than 
0.2, the lo git scale closely resembles the log scale. Thus if all the 
observed proportions are small, the analyst may consider per­
centage differences in the standardized proportions. Similarly, 
if all the observed proportions are close to one, the analyst may 
replace each proportion by unity minus the proportion and again 
consider percentage differences in the standardized proportions, 
with appropriate interpretation. (c) For cases not covered by (a) 
or (b), the best approximate procedure is probably to consider 
the standardized logits, although the interpretation of these as 
log-odds is not quite as familiar as the other forms. We conclude 
the discussion by applying these suggestions to our final example. 

Example 5. The proportions in Table 11 are derived from a 
2x4x2x2 contingency table which gives the number of women 
who have never used modern contraception, within two cate­
gories of education, four categories of age, and two categories 
of fertility preference (whether the woman does or does not want 
children). As with Table 2, the data refer to Indian women in the 
Fiji Fertility Survey, 1974. Ever-use by women who want more 
children will have been primarily for spacing purposes. 

These data are reorganized in Table 12 such that preferences 
and age are combined into an 8-category variable, and the interest 
is in the effect of education upon ever-use controlling for prefer­
ences and age simultaneously. From the preceding discussion, 
standardization will be an acceptable method for controlling so 
long as the differences (equation 23) do not depend upon the 
choice of standard. To check this, we have applied two alternative 
standards: the uniform distribution, in which one-eighth of the 
sample is in each of the preference x age categories, and TFS, 
which uses the overall sample frequencies in the final column of 
Table 12. 

Under the uniform distribution, the standardized logit is 1.382 
for the higher educated group and 1.108 for the less educated 
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TABLE 12 
Proportion (and Logit) of Indian Women in Figi Who 

Ever Used an Efficient Contraceptive Method According to 
Current Age, Desire for More Children, and Educational Level 

Hif\h Low 

Desire for Age 
Education Education Sample 

Another Croup Proportion Log it Proportion Log it Size 
Child 

Yes .65 .619 .60 .455 528 

Yes .82 1.516 . 72 .944 294 

Yes .69 . 800 .58 .323 189 

Yes .67 . 709 .42 -.323 22 

No . 84 1. 658 .82 l. 515 117 

?\u .88 1.99: . 89 2.091 261 

:\t) . 91 2.314 .90 2. 197 f>30 

'.\n . 81 1 .1150 . 84 1. 658 353 

SOURCE: Table 11. 
NOTE: Logits calculated from proportions before rounding. 

group, for a difference in standardized logits of .274. Under Test 
Factor Standardization the quantities are I. 513 and I. 363, 
respectively, for a difference of .150. The differences (.274 and 
.150) depend heavily upon the choice of standard, and we con­
clude without making a formal tesi that standardization is not 
appropriate. 

The application of logit linear models to the original 2x4x2x2 
table shows that, as might have been expected from theoretical 
considerations, there is significant interaction between education 
and preferences. That is, education and the preference x age 
composite variable are not lo git linear additive in their impact on 
ever-use, a formal confirmation that standardization is not 
appropriate. 

Pursuing this illustration a bit further, we can focus on the 
women who state a desire for no more children, and consider 
(within this group) the effect of education controlling for age. 
There is only a small sensitivity to choice of standard in the 
difference between standardized logits. Under the uniform age 
distribution, the difference between the high and low education 
categories is -.012 on the lo git scale; using the overall age distri-
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bution for these women, the difference is -.006. With the age 
distribution of the lower educated women as the standard, the 
difference is -.0 I l, and with the age distribution of the higher 
educated women as the standard, the difference changes sign to 
.009. The variation is small. Calculation of the lo git linear models 
for these data using ECT A (Everyman's Contingency Table 
Analysis) shows that (a) there is no significant education effect, 
controlling for age, and (b) the preceding four numbers are inside 
the 959[ confidence interval for the education effect on the logit 
scale. 

SCVIMARY AND CO!\'CLCSIO!\' 

We have seen that standardization of a table of means is an 
efficient summarization of data if differences in the standardized 
means, on the raw or log scale, are insensitive to the choice of 
standard. This corresponds to certain linear or log-linear models 
for the table. which express that the effects of the factors on the 
response are additin, or in other words, that interactions are not 
present in the data. The first difficulty in using standardization is 
in deciding whether such significant interactions are present. 
Approximate tests of additivity could be developed but have not 
been given here. Even if this condition is met, there will be some 
statistical variation in the differences between (or ratios of) 
standardized quantities as different standards are used. This leads 
to a second difficulty, namely that standardization leads to 
statistically inefficient estimates of standardized differences and 
can be oversensitive to deviant ceii means based on smaii numbers 
of observations. 

An alternative procedure is to use the underlying additivity 
assumption to fit appropriate models to the data, such as the 
linear additive models of analysis of variance or log-linear 
additive models. Then the fitted means from these models can be 
standardized rather than observed means. The resulting stand­
ardized differences are completely insensitive to the choice of 
standard and are under certain assumptions statistically efficient. 
Also the fitting procedure can include formal statistical tests of 
the additivity assumption. 

If a table of proportions is derived from a multidimensional 
contingency table, these can also be subjected to direct standard-
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ization. However, in such cases the condition of linear or log 
linear additivity is not the most natural; the conditions cor­
responding to log-linear models for the contingency table is that 
the table of proportions is additive on the logit scale. If logit­
linear additivity applies, then no transformation of differences in 
the standardized proportions is entirely appropriate, although 
raw differences, or log differences, are approximately valid in 
certain situations, and in such cases can serve as approximations 
to the estimated effects from the logit-linear additive model. 
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